Section 5.2

1) $\int 2 x\left(x^{2}+5\right)^{4} d x$

$$
=\int\left(x^{2}+5\right)^{4} 2 x d x
$$

Rewrite the problem so that the parenthesis is first:

Next: let $u=$ inside of the parenthesis

$$
\text { let } v=x^{2}+5
$$

Rewrite the problem so that the "parenthesis is changed to an "u" $-\infty$
Next find $\frac{d u}{d x}$
$d x \frac{d v}{d x}=2 x \cdot d x$
Multiply by $d x$ to clear the fraction.

Next integrate: use Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided
Last change u back to get the answer
answer: $\frac{1}{5}\left(x^{2}+5\right)^{5}+C$

3) $\int(2 x+3)\left(x^{2}+3 x-4\right)^{3} d x$

Rewrite the problem so that the parenthesis with the exponent is first:

$$
\int\left(x^{2}+3 x-4\right)^{3}(2 x+3) d x
$$

Next: let $u=$ inside of the parenthesis

$$
\text { let } u=x^{2}+3 x-4
$$

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "
vet ana $\frac{\omega}{x 1} U=x^{2}+3 x-4$

$$
=\int v^{3}(2 x+3) d x
$$

$$
d x d v=(2 x+3) d x
$$

Multiply by $d x$ to clear the fraction.

$$
d v==(2 x+3) d x
$$

Next replace to make problem only have u's
Next integrate: use Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\hat{x} \neq-1$

Last change u back to get the answer

$$
=\frac{1}{4}\left(x^{2}+3 x-4\right)^{4}+C
$$

answer: $\frac{1}{4}\left(x^{2}+3 x-4\right)^{4}+C$
5) $\int 2 x e^{x^{2}} d x$

Next: let $u=$ exponent of the e

$$
\operatorname{let} v=x^{2}
$$

Rewrite the problem so that the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next integrate: " e " Rule $\int e^{x} d x=e^{x}+C$

Last change u back to get the answer
Next replace to make problem only have u's

answer: $e^{x^{2}}+C$
7) $\int(2 x+5) e^{x^{2}+5 x} d x$

Rewrite the problem so that the "e" is written first:

Next: let $u=$ exponent of the e

$$
\text { let } u=x^{2}+5 x
$$

Rewrite the problem so that the exponent is changed to an " u "

Multiply by $d x$ to clear the fraction. $=(2 x+5) d x$
Next replace to make problem only have u's

Next integrate: " e " Rule $\int e^{x} d x=e^{x}+C$

Last change u back to get the answer

answer: $e^{x^{2}+5 x}+C$
9) $\int \frac{4}{4 x-7} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a - 1 exponent

$$
=\int 4(4 x-7)^{-1} d x
$$

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

$$
\text { let } u=4 x-7
$$

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "
$v=4 x-7$

Multiply by $d x$ to clear the fraction.

$$
d v=4 d x
$$

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

$$
=\operatorname{Ln} \mid 4 x-71+C
$$

Last change u back to get the answer
answer: $\ln |4 x-7|+C$
11) $\int \frac{2 x+3}{\left[2^{2}+3 x-5\right]} d x=\int(2 x+3)\left(x^{2}+3 x-5\right)^{-1} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a - 1 exponent

Rewrite the problem so that the parenthesis with the exponent is first:

$$
=\int^{\text {is with the exponent is first: }}\left(x^{2}+3 x-5\right)^{-1}(2 x+3) d x
$$

Next: let $u=$ inside of the parenthesis

$$
\text { LeT } u=x^{2}+3 x-5
$$

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next ford $\frac{\text { un d }}{\text { and }} d x \frac{d v}{d x}=(2 x+3) d x$
Multiply by $d x$ to clear the fraction $(3 x+3) d x$
Next replace to make problem only have u's

$$
=\ln |u|+C
$$

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

$$
=\ln \left|x^{2}+3 x-5\right|+C
$$

Last change u back to get the answer
answer: $\ln \left|x^{2}+3 x-5\right|+C$
\#13-24: Use u-substitution to evaluate the indefinite integrals.
13) $\int 6 x\left(x^{2}+5\right)^{4} d x$

$$
=\int\left(x^{2}+5\right)^{4} 6 x d x
$$

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

$$
\begin{aligned}
& \operatorname{leTU}=x^{2}+5 \\
& =\int v^{4} 6 x d x
\end{aligned}
$$

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

$$
v=x^{2}+5
$$

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

$$
\begin{aligned}
& d x=32 x d x \\
& 3 d v
\end{aligned}
$$

This is not good enough. Multiply to make a perfect match

$$
3 v=6 x d x
$$

Next replace to make problem only have u's

Next integrate: Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\bigcap \neq-1$

Last change u back to get the answer
Answer: $\frac{3}{5}\left(x^{2}+5\right)^{5}+C$

15) $\int(4 x+6)\left(x^{2}+3 x-4\right)^{3} d x$

$$
=\int\left(x^{2}+3 x-4\right)^{3}(4 x+6) d x
$$

Rewrite the problem so that the parenthesis with the exponent is first:

$$
1 e T v=x^{2}+3 x-4
$$

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

$$
v=x^{2}+3 x-4
$$

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

$$
2 \cdot d v=2 \cdot(2 x+3) d x
$$

This is not good enough. Multiply to make a perfect match

$$
\int u^{3} \cdot 2 d u
$$

Next integrate: Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\bigcap_{\neq 1}^{n} \neq-1$

Last change u back to get the answer

Answer: $\frac{1}{2}\left(x^{2}+3 x-4\right)^{4}+C$
17) $\int 10 x e^{x^{2}} d x$

Rewrite the problem so that the "e" is written first:

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

$$
5 . d u=5.2 x d x
$$

This is not good enough. Multiply to make a perfect match.

Next replace to make problem only have u's

Next integrate: " $e^{\text {" Rule }} \int e^{x} d x=e^{x}+C$

Last change u back to get the answer

answer: $5 e^{x^{3}}+C$
19) $\int(8 x+20) e^{x^{2}+5 x} d x$

Rewrite the problem so that the "e" is written first:

$$
\text { let } u=x^{2}+5
$$

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u "

$$
v=x^{2}+5 x
$$

Next find $\frac{d u}{d x}$

$$
\begin{aligned}
& d x \frac{d u}{d x}=2 x+5 d x \\
& \frac{d u}{}=4(2 x+5) d x
\end{aligned}
$$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match.

$$
4 d v=(8 x+20) d x
$$

Next replace to make problem only have u's

Next integrate: " $e^{\text {" Rule } \int} e^{x} d x=e^{x}+C$

Last change u back to get the answer
answer: $4 e^{x^{2}+5 x}+C$

21) $\int \frac{8}{4 x-7} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

$$
=\int_{\text {he exponent is first: }}(x-1)
$$

$-8 d x$
Rewrite the problem so that the parenthesis with the exponent is first:

$$
\text { let } v=4 x-7
$$

Next: let $u=$ inside of the parenthesis

$v^{-1} 8 d x$
Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match.

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer

$$
\begin{aligned}
& =2 \ln |u|+c \\
& =2 \ln |4 x-7|+c
\end{aligned}
$$

answer: $2 \ln |4 x-7|+C$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

$$
=\left(x x^{2}\right.
$$

Rewrite the problem so that the -parenthesis with the exponent is first:

$$
1-T v=x^{2}+3 x-5
$$

Next: let $u=$ inside of the parenthesis
$\int 0^{-1}(16 x+29) d x$
Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "
Next find $\frac{d u}{d x} \quad \cup=x^{2}+3 x-5$

$$
\frac{d x}{} \frac{d u}{d x}=(2 x+3) d x
$$

Multiply by $d x$ to clear the fraction.

$$
d x \quad d v=8(2 x+3) d x
$$

This is not good enough. Multiply to make a perfect match. $8 d v=(16 x+24) d x$

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer answer: $8 \ln \left|x^{2}+3 x-5\right|+C$

\#25-32: Use u-substitution to evaluate the indefinite integrals.
25) $\int 2 x\left(4 x^{2}+5\right)^{4} d x$

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

$$
U=4 x^{2}+5
$$

Next find $\frac{d u}{d x}$

This is not good enough. Multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $n_{\neq-1}$

Last change u back to get the answer
answer: $\frac{1}{20}\left(4 x^{2}+5\right)^{5}+C$

27) $\int(2 x+3)\left(2 x^{2}+6 x-1\right)^{3} d x$

$$
=\int\left(2 x^{2}+6 x-1\right)^{3}(2 x+3) d x
$$

Rewrite the problem so that the parenthesis with the exponent is first:

$$
l e T v=2 x^{2}+6 x-1
$$

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

$$
V=2 x+6 x-1
$$

Next find $\frac{d u}{d x}$

$$
\begin{aligned}
& d x \frac{d u}{d x}=(4 x+6) d x \\
& \int v=\frac{1}{2}(4 x+6) d x
\end{aligned}
$$

This is not good enough. Multiply to make a perfect match $\int_{2} d v=(2 x+3) d x$
Next replace to make problem only have u's

Next integrate: Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $\neq-1$

Last change u back to get the answer
answer: $\frac{1}{8}\left(2 x^{2}+6 x-1\right)^{4}+C$

29) $\int \frac{2}{4 x-7} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent
Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

$$
16
$$

eT

Rewrite the problem so that the "parenthesis with the exponent is changed to an "u"

$$
v=4 x-7
$$

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match.

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer

answer: $\frac{1}{2} \ln |4 x-7|+C$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

$$
=\int\left(3 x^{2}+6 x-5\right)^{-1}(2 x+2) d x
$$

Rewrite the problem so that the parenthesis with the exponent is first:

$$
\text { leT } v=3 x^{2}+6 x-5
$$

Next: let $u=$ inside of the parenthesis

$$
=\int V^{-1}(2 x+2) d x
$$

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

$$
v=3 x^{2}+6 x-5
$$

This is not good enough. Multiply to make a perfect match.

$$
\begin{aligned}
& d x \frac{d u}{d x}=(6 x+6 d x \\
& \frac{d x}{3} d u=\frac{1}{3}(6 x+6) d x
\end{aligned}
$$

$$
\frac{1}{3} d u=(2 x+2) d x
$$

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer
answer: $\frac{1}{3} \ln \left|3 x^{2}+6 x-5\right|+C$

$$
\begin{aligned}
& =\frac{1}{3} \ln |u|+c \\
= & \frac{1}{3} \ln \left|3 x^{2}+6 x-5\right|+c
\end{aligned}
$$

